Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 86
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Front Immunol ; 13: 976512, 2022.
Статья в английский | MEDLINE | ID: covidwho-2320841

Реферат

COVID-19 prognoses suggests that a proportion of patients develop fibrosis, but there is no evidence to indicate whether patients have progression of mesenchymal transition (MT) in the lungs. The role of MT during the COVID-19 pandemic remains poorly understood. Using single-cell RNA sequencing, we profiled the transcriptomes of cells from the lungs of healthy individuals (n = 45), COVID-19 patients (n = 58), and idiopathic pulmonary fibrosis (IPF) patients (n = 64) human lungs to map the entire MT change. This analysis enabled us to map all high-resolution matrix-producing cells and identify distinct subpopulations of endothelial cells (ECs) and epithelial cells as the primary cellular sources of MT clusters during COVID-19. For the first time, we have identied early and late subgroups of endothelial mesenchymal transition (EndMT) and epithelial-mesenchymal transition (EMT) using analysis of public databases for single-cell sequencing. We assessed epithelial subgroups by age, smoking status, and gender, and the data suggest that the proportional changes in EMT in COVID-19 are statistically significant. Further enumeration of early and late EMT suggests a correlation between invasive genes and COVID-19. Finally, EndMT is upregulated in COVID-19 patients and enriched for more inflammatory cytokines. Further, by classifying EndMT as early or late stages, we found that early EndMT was positively correlated with entry factors but this was not true for late EndMT. Exploring the MT state of may help to mitigate the fibrosis impact of SARS-CoV-2 infection.


Тема - темы
COVID-19 , Epithelial-Mesenchymal Transition , Cytokines , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Humans , Pandemics , SARS-CoV-2 , Signal Transduction
2.
Angiogenesis ; 26(3): 313-347, 2023 Aug.
Статья в английский | MEDLINE | ID: covidwho-2294482

Реферат

In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.


Тема - темы
COVID-19 , Neoplasms , Female , Humans , SARS-CoV-2 , Neovascularization, Pathologic/drug therapy , Neoplasms/blood supply , Endothelial Cells/pathology , Angiogenesis Inhibitors/pharmacology
3.
Semin Respir Crit Care Med ; 44(1): 21-34, 2023 02.
Статья в английский | MEDLINE | ID: covidwho-2186473

Реферат

The coronavirus disease 2019 (COVID-19) pandemic has caused a devastating impact on morbidity and mortality around the world. Severe acute respiratory syndrome-coronavirus-2 has a characteristic tropism for the cardiovascular system by entering the host cells and binding to angiotensin-converting enzyme 2 receptors, which are expressed in different cells, particularly endothelial cells. This endothelial injury is linked by a direct intracellular viral invasion leading to inflammation, microthrombosis, and angiogenesis. COVID-19 has been associated with acute myocarditis, cardiac arrhythmias, new onset or worsening heart failure, ischemic heart disease, stroke, and thromboembolic disease. This review summarizes key relevant literature regarding the epidemiology, diagnosis, treatment, and preventive measures related to cardiovascular complications in the setting of COVID-19.


Тема - темы
COVID-19 , Cardiovascular Diseases , Humans , COVID-19/complications , Endothelial Cells/metabolism , Endothelial Cells/pathology , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Inflammation/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/complications
4.
Cells ; 11(20)2022 10 21.
Статья в английский | MEDLINE | ID: covidwho-2154904

Реферат

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating disease that can be caused by a variety of conditions including pneumonia, sepsis, trauma, and most recently, COVID-19. Although our understanding of the mechanisms of ALI/ARDS pathogenesis and resolution has considerably increased in recent years, the mortality rate remains unacceptably high (~40%), primarily due to the lack of effective therapies for ALI/ARDS. Dysregulated inflammation, as characterized by massive infiltration of polymorphonuclear leukocytes (PMNs) into the airspace and the associated damage of the capillary-alveolar barrier leading to pulmonary edema and hypoxemia, is a major hallmark of ALI/ARDS. Endothelial cells (ECs), the inner lining of blood vessels, are important cellular orchestrators of PMN infiltration in the lung. Nuclear factor-kappa B (NF-κB) plays an essential role in rendering the endothelium permissive for PMN adhesion and transmigration to reach the inflammatory site. Thus, targeting NF-κB in the endothelium provides an attractive approach to mitigate PMN-mediated vascular injury, not only in ALI/ARDS, but in other inflammatory diseases as well in which EC dysfunction is a major pathogenic mechanism. This review discusses the role and regulation of NF-κB in the context of EC inflammation and evaluates the potential and problems of targeting it as a therapy for ALI/ARDS.


Тема - темы
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , NF-kappa B , Endothelial Cells/pathology , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Inflammation
5.
Expert Rev Clin Immunol ; 17(9): 991-1001, 2021 09.
Статья в английский | MEDLINE | ID: covidwho-1820723

Реферат

Introduction: Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated.Areas covered: The PubMed database was reviewed for relevant papers published up to 2021. This review summarizes the currently immunological and clinical studies to provide a systemic overview of the epithelial-endothelial barrier, given the recently published immunological profiles upon viral pneumonia, and the potentially detrimental contribution to respiratory function caused by damage to this barrier.Expert opinion: The biophysical structure of host pulmonary defense is intrinsically linked with the ability of alveolar epithelial and capillary endothelial cells, known as the epithelial-endothelial barrier, to respond to, and instruct the delicate immune system to protect the lungs from infections and injuries. Recently published immunological profiles upon viral infection, and its contributions to the damage of respiratory function, suggest a central role for the pulmonary epithelial and endothelial barrier in the pathogenesis of ARDS. We suggest a central role and common pathways by which the epithelial-endothelial barrier contributes to the pathogenesis of ARDS.


Тема - темы
Respiratory Distress Syndrome , Viruses , Endothelial Cells/pathology , Humans , Immune System , Lung
6.
Front Immunol ; 13: 991256, 2022.
Статья в английский | MEDLINE | ID: covidwho-2065519

Реферат

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of diseases characterized by inflammation and destruction of small and medium-sized blood vessels. Clinical disease phenotypes include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the rise in recent years with advances in ANCA testing. The etiology and pathogenesis of AAV are multifactorial and influenced by both genetic and environmental factors, as well as innate and adaptive immune system responses. Multiple case reports have shown that sustained exposure to silica in an occupational environment resulted in a significantly increased risk of ANCA positivity. A meta-analysis involving six case-control studies showed that silica exposure was positively associated with AAV incidence. Additionally, exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for AAV. AAV has seasonal trends. Studies have shown that various environmental factors stimulate the body to activate neutrophils and expose their own antigens, resulting in the release of proteases and neutrophil extracellular traps, which damage vascular endothelial cells. Additionally, the activation of complement replacement pathways may exacerbate vascular inflammation. However, the role of environmental factors in the etiology of AAV remains unclear and has received little attention. In this review, we summarized the recent literature on the study of environmental factors, such as seasons, air pollution, latitude, silica, and microbial infection, in AAV with the aim of exploring the relationship between environmental factors and AAV and possible mechanisms of action to provide a scientific basis for the prevention and treatment of AAV.


Тема - темы
Air Pollutants , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Churg-Strauss Syndrome , Granulomatosis with Polyangiitis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , Antibodies, Antineutrophil Cytoplasmic , Carbon Monoxide/therapeutic use , Churg-Strauss Syndrome/complications , Endothelial Cells/pathology , Humans , Inflammation/complications , Peptide Hydrolases , Silicon Dioxide
7.
Int J Mol Sci ; 23(18)2022 Sep 06.
Статья в английский | MEDLINE | ID: covidwho-2010118

Реферат

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Тема - темы
Endothelial Cells/pathology , Hepatitis A Virus Cellular Receptor 1/metabolism , MicroRNAs , Angiotensin-Converting Enzyme 2 , COVID-19 , Dengue , Endothelial Cells/metabolism , Hemorrhagic Fever, Ebola , Humans , Immunoglobulins , MicroRNAs/genetics , Mucins , Neuropilin-1/genetics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Stroke , Zika Virus , Zika Virus Infection
8.
Int J Mol Sci ; 23(17)2022 Sep 03.
Статья в английский | MEDLINE | ID: covidwho-2010114

Реферат

BACKGROUND: Kawasaki Disease (KD) and Multisystem Inflammatory Syndrome in Children (MIS-C) are pediatric diseases characterized by systemic inflammation and vascular injury, potentially leading to coronary artery lesions (CALs). Data on vascular injury occurring during acute COVID-19 (AC19) in children are still lacking. The aim of our study was to investigate endothelial injury in KD-, MIS-C- and AC19-dosing circulating endothelial cells (CECs). METHODS: We conducted a multicenter prospective study. CECs were enumerated by CellSearch technology through the immunomagnetic capture of CD146-positive cells from whole blood. RESULTS: We enrolled 9 KD, 20 MIS-C and 10 AC19. During the acute stage, the AC19 and KD patients had higher CECs levels than the MIS-C patients. From the acute to subacute phase, a significant CEC increase was observed in the KD patients, while a mild decrease was detected in the MIS-C patients. Cellular clusters/syncytia were more common in the KD patients. No correlation between CECs and CALs were found in the MIS-C patients. The incidence of CALs in the KD group was too low to investigate this correlation. CONCLUSIONS: Our study suggests a possible role of CECs as biomarkers of systemic inflammation and endothelial dysfunction in KD and MIS-C and different mechanisms of vascular injury in these diseases. Further larger studies are needed.


Тема - темы
COVID-19 , Mucocutaneous Lymph Node Syndrome , Vascular System Injuries , Biomarkers , COVID-19/complications , Child , Endothelial Cells/pathology , Humans , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Prospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis
9.
Pflugers Arch ; 474(10): 1069-1076, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-1955965

Реферат

Proinflammatory cytokines target vascular endothelial cells during COVID-19 infections. In particular, the endothelial glycocalyx (eGC), a proteoglycan-rich layer on top of endothelial cells, was identified as a vulnerable, vasoprotective structure during infections. Thus, eGC damage can be seen as a hallmark in the development of endothelial dysfunction and inflammatory processes. Using sera derived from patients suffering from COVID-19, we could demonstrate that the eGC became progressively worse in relation to disease severity (mild vs severe course) and in correlation to IL-6 levels. This could be prevented by administering low doses of spironolactone, a well-known and highly specific aldosterone receptor antagonist. Our results confirm that SARS-CoV-2 infections cause eGC damage and endothelial dysfunction and we outline the underlying mechanisms and suggest potential therapeutic options.


Тема - темы
COVID-19 Drug Treatment , COVID-19 , Glycocalyx , Mineralocorticoid Receptor Antagonists , SARS-CoV-2 , Spironolactone , COVID-19/blood , COVID-19/pathology , Cytokines/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Glycocalyx/drug effects , Glycocalyx/pathology , Humans , Interleukin-6/blood , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Proteoglycans/analysis , Proteoglycans/blood , Spironolactone/pharmacology , Spironolactone/therapeutic use
10.
Int J Mol Sci ; 21(15)2020 Jul 27.
Статья в английский | MEDLINE | ID: covidwho-1934096

Реферат

In physiology and pathophysiology the molecules involved in blood cell-blood cell and blood cell-endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib-IX-V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4ß1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or ß-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.


Тема - темы
Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Erythrocytes/metabolism , Neoplasm Proteins/metabolism , Polycythemia Vera/metabolism , Retinal Vein Occlusion/metabolism , Cell Adhesion , Endothelial Cells/pathology , Erythrocytes/pathology , Glycation End Products, Advanced/metabolism , Humans , Polycythemia Vera/pathology , Receptor for Advanced Glycation End Products/metabolism , Retinal Vein Occlusion/pathology , Thrombosis/metabolism , Thrombosis/pathology
11.
Mycopathologia ; 187(4): 355-362, 2022 Aug.
Статья в английский | MEDLINE | ID: covidwho-1899253

Реферат

BACKGROUND: In experimental models, the expression of glucose-regulated protein 78 (GRP78) in endothelial cells played a role in the pathogenesis of mucormycosis. However, the role of GRP78 in COVID-19-associated mucormycosis (CAM) has not been studied. We hypothesized that serum GRP78 levels are elevated in subjects with CAM. OBJECTIVE: To compare the serum GRP78 levels in subjects with CAM and COVID-19 controls without mucormycosis. DESIGN AND SETTING: We performed a hospital-based, case-control study between 1 April 2021 and 31 May 2021. PARTICIPANTS: We enrolled 24 subjects each of CAM and COVID-19 subjects without mucormycosis. We also measured serum GRP78 levels in ten healthy controls. EXPOSURE: The primary exposure studied was serum GRP78 concentration, estimated using a commercially available ELISA kit in stored serum samples. RESULTS: We found the mean ± standard deviation (SD) serum GRP78 levels significantly higher (p = 0.0001) among the CAM (374.3 ± 127.3 pg/mL) than the COVID-19 (246.4 ± 67.0 pg/mL) controls. The proportion of subjects with an abnormal GRP78 level (> mean [184.8 pg/mL] plus two SD [23.2 pg/mL] of GRP78 from healthy participants) was 87.5% and 45.8% in the CAM group and COVID-19 controls, respectively. Serum GRP78 level was independently associated with CAM (odds ratio 1.011; 95% confidence interval [1.002-1.019]) after adjusting for diabetes mellitus and hypoxemia during acute COVID-19. CONCLUSION: Serum GRP78 levels were significantly higher in CAM than in COVID-19 controls. Further studies are required to the role of GRP78 in the pathogenesis of CAM.


Тема - темы
COVID-19 , Mucormycosis , Case-Control Studies , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glucose/metabolism , Heat-Shock Proteins/metabolism , Humans , Mucormycosis/pathology
12.
Cold Spring Harb Perspect Med ; 12(10)2022 10 03.
Статья в английский | MEDLINE | ID: covidwho-1831593

Реферат

COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.


Тема - темы
COVID-19 , Endothelial Cells , Ischemia , Microcirculation , Neovascularization, Pathologic , COVID-19/complications , COVID-19/pathology , COVID-19/physiopathology , Corrosion Casting , Endothelial Cells/pathology , Endothelial Cells/ultrastructure , Humans , Ischemia/complications , Neovascularization, Pathologic/complications , Post-Acute COVID-19 Syndrome
13.
Front Immunol ; 13: 876555, 2022.
Статья в английский | MEDLINE | ID: covidwho-1809408

Реферат

SARS-CoV-2 infects cells via binding to ACE2 and TMPRSS2, which allows the virus to fuse with host cells. The viral RNA is detected in the placenta of SARS-CoV-2-infected pregnant women and infection is associated with adverse pregnancy complications. Therefore, we hypothesize that SARS-CoV-2 infection of placental cells induces pro-inflammatory cytokine release to contribute to placental dysfunction and impaired pregnancy outcomes. First, expression of ACE2 and TMPRSS2 was measured by qPCR in human primary cultured term cytotrophoblasts (CTBs), syncytiotrophoblast (STBs), term and first trimester decidual cells (TDCs and FTDCs, respectively), endometrial stromal cells (HESCs) as well as trophoblast cell lines HTR8, JEG3, placental microvascular endothelial cells (PMVECs) and endometrial endothelial cells (HEECs). Later, cultured HTR8, JEG3, PMVECs and HEECs were treated with 10, 100, 1000 ng/ml of recombinant (rh-) SARS-CoV-2 S-protein ± 10 ng/ml rh-IFNγ. Pro-inflammatory cytokines IL-1ß, 6 and 8, chemokines CCL2, CCL5, CXCL9 and CXCL10 as well as tissue factor (F3), the primary initiator of the extrinsic coagulation cascade, were measured by qPCR as well as secreted IL-6 and IL-8 levels were measured by ELISA. Immunohistochemical staining for SARS-CoV-2 spike protein was performed in placental specimens from SARS-CoV-2-positive and normal pregnancies. ACE2 levels were significantly higher in CTBs and STBs vs. TDCs, FTDCs and HESCs, while TMPRSS2 levels were not detected in TDCs, FTDCs and HESCs. HTR8 and JEG3 express ACE2 and TMPRSS2, while PMVECs and HEECs express only ACE2, but not TMPRSS2. rh-S-protein increased proinflammatory cytokines and chemokines levels in both trophoblast and endothelial cells, whereas rh-S-protein only elevated F3 levels in endothelial cells. rh-IFNγ ± rh-S-protein augments expression of cytokines and chemokines in trophoblast and endothelial cells. Elevated F3 expression by rh-IFNγ ± S-protein was observed only in PMVECs. In placental specimens from SARS-CoV-2-infected mothers, endothelial cells displayed higher immunoreactivity against spike protein. These findings indicated that SARS-CoV-2 infection in placental cells: 1) induces pro-inflammatory cytokine and chemokine release, which may contribute to the cytokine storm observed in severely infected pregnant women and related placental dysfunction; and 2) elevates F3 expression that may trigger systemic or placental thrombosis.


Тема - темы
COVID-19 , Placenta Diseases , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2 , Cell Line, Tumor , Cytokines/metabolism , Endothelial Cells/pathology , Female , Humans , Placenta/metabolism , Placenta Diseases/pathology , Pregnancy , Pregnant Women , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thromboplastin/metabolism
14.
Semin Immunopathol ; 44(3): 375-390, 2022 05.
Статья в английский | MEDLINE | ID: covidwho-1782786

Реферат

The SARS-CoV-2 virus ACE-2 receptor utilization for cellular entry and the defined ACE-2 receptor role in cardiovascular medicine hinted at dysregulated endothelial function or even direct viral endotheliitis as the key driver of severe COVID-19 vascular immunopathology including reports of vasculitis. In this article, we critically review COVID-19 immunopathology from the vasculitis perspective and highlight the non-infectious nature of vascular endothelial involvement in severe COVID-19. Whilst COVID-19 lung disease pathological changes included juxta-capillary and vascular macrophage and lymphocytic infiltration typical of vasculitis, we review the evidence reflecting that such "vasculitis" reflects an extension of pneumonic inflammatory pathology to encompass these thin-walled vessels. Definitive, extrapulmonary clinically discernible vasculitis including cutaneous and cardiac vasculitis also emerged- namely a dysregulated interferon expression or "COVID toes" and an ill-defined systemic Kawasaki-like disease. These two latter genuine vasculitis pathologies were not associated with severe COVID-19 pneumonia. This was distinct from cutaneous vasculitis in severe COVID-19 that demonstrated pauci-immune infiltrates and prominent immunothrombosis that appears to represent a novel immunothrombotic vasculitis mimic contributed to by RNAaemia or potentially diffuse pulmonary venous tree thrombosis with systemic embolization with small arteriolar territory occlusion, although the latter remains unproven. Herein, we also performed a systematic literature review of COVID-19 vasculitis and reports of post-SARS-CoV-2 vaccination related vasculitis with respect to the commonly classified pre-COVID vasculitis groupings. Across the vasculitis spectrum, we noted that Goodpasture's syndrome was rarely linked to natural SARS-CoV-2 infection but not vaccines. Both the genuine vasculitis in the COVID-19 era and the proposed vasculitis mimic should advance the understanding of both pulmonary and systemic vascular immunopathology.


Тема - темы
COVID-19 , Vasculitis , Alveolar Epithelial Cells , COVID-19 Vaccines , Endothelial Cells/pathology , Endothelium, Vascular , Humans , SARS-CoV-2 , Vasculitis/etiology , Vasculitis/pathology
15.
Clin Hemorheol Microcirc ; 81(3): 205-219, 2022.
Статья в английский | MEDLINE | ID: covidwho-1765652

Реферат

BACKGROUND: Coronavirus disease (COVID-19) associated endotheliopathy and microvascular dysfunction are of concern. OBJECTIVE: The objective of the present single-center observational pilot study was to compare endothelial glycocalyx (EG) damage and endotheliopathy in patients with severe COVID-19 (COVID-19 group) with patients with bacterial pneumonia with septic shock (non-COVID group). METHODS: Biomarkers of EG damage (syndecan-1), endothelial cells (EC) damage (thrombomodulin), and activation (P-selectin) were measured in blood on three consecutive days from admission to the intensive care unit (ICU). The sublingual microcirculation was studied by Side-stream Dark Field (SDF) imaging with automatic assessment. RESULTS: We enrolled 13 patients in the non-COVID group (mean age 70 years, 6 women), and 15 in the COVID-19 group (64 years old, 3 women). The plasma concentrations of syndecan-1 were significantly higher in the COVID-19 group during all three days. Differences regarding other biomarkers were not statistically significant. The assessment of the sublingual microcirculation showed improvement on Day 2 in the COVID-19 group. Plasma levels of C-reactive protein (CRP) were significantly higher on the first two days in the COVID-19 group. Plasma syndecan-1 and CRP were higher in patients suffering from severe COVID-19 pneumonia compared to bacterial pneumonia patients. CONCLUSIONS: These findings support the role of EG injury in the microvascular dysfunction in COVID-19 patients who require ICU.


Тема - темы
COVID-19 , Endothelial Cells , Glycocalyx , Aged , Biomarkers , COVID-19/pathology , Endothelial Cells/pathology , Female , Glycocalyx/metabolism , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Respiration, Artificial , Syndecan-1/metabolism
16.
Nature ; 603(7899): 145-151, 2022 03.
Статья в английский | MEDLINE | ID: covidwho-1631700

Реферат

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Тема - темы
COVID-19/immunology , COVID-19/pathology , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SARS-CoV-2/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
17.
Sci Rep ; 12(1): 965, 2022 01 19.
Статья в английский | MEDLINE | ID: covidwho-1638855

Реферат

Hospitalized patients who die from Covid-19 often have pre-existing heart disease. The SARS-CoV-2 virus is dependent on the ACE2 receptor to be able to infect cells. It is possible that the strong link between cardiovascular comorbidities and a poor outcome following a SARS-CoV-2 infection is sometimes due to viral myocarditis. The aim was to examine the expression of ACE2 in normal hearts and hearts from patients with terminal heart failure. The ACE2 expression was measured by global quantitative proteomics and RT-qPCR in left ventricular (LV) tissue from explanted hearts. Immunohistochemistry was used to examine ACE2 expression in cardiomyocytes, fibroblasts and endothelial cells. In total, tissue from 14 organ donors and 11 patients with terminal heart failure were included. ACE2 expression was 2.6 times higher in 4 hearts from patients with terminal heart failure compared with 6 healthy donor hearts. The results were confirmed by immunohistochemistry where more than half of cardiomyocytes or fibroblasts showed expression of ACE2 in hearts from patients with terminal heart failure. In healthy donor hearts ACE2 was not expressed or found in few fibroblasts. A small subpopulation of endothelial cells expressed ACE2 in both groups. Upregulated ACE2 expression in cardiomyocytes may increase the risk of SARS-CoV-2 myocarditis in patients with heart failure.


Тема - темы
Angiotensin-Converting Enzyme 2/metabolism , Endothelial Cells/pathology , Fibroblasts/pathology , Heart Failure/pathology , Myocytes, Cardiac/pathology , Tissue Donors/supply & distribution , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Case-Control Studies , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/therapy , Heart Transplantation/methods , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Young Adult
18.
Biochem Pharmacol ; 197: 114909, 2022 03.
Статья в английский | MEDLINE | ID: covidwho-1616378

Реферат

Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.


Тема - темы
COVID-19/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Vascular Diseases/pathology , COVID-19/complications , COVID-19/immunology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Sepsis/drug therapy , Sepsis/etiology , Sepsis/immunology , Sepsis/pathology , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/immunology , COVID-19 Drug Treatment
19.
Int J Mol Sci ; 22(24)2021 Dec 20.
Статья в английский | MEDLINE | ID: covidwho-1580687

Реферат

COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.


Тема - темы
Blood Platelets/physiology , COVID-19/blood , Thrombosis/pathology , Blood Coagulation , Blood Coagulation Disorders/etiology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19/metabolism , Cytokine Release Syndrome , Endothelial Cells/pathology , Fibrin Fibrinogen Degradation Products , Hemostasis , Humans , Inflammation , Phenotype , Platelet Activation/physiology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Thrombocytopenia/metabolism , Thrombosis/metabolism , Thrombosis/virology
20.
Viruses ; 13(12)2021 12 19.
Статья в английский | MEDLINE | ID: covidwho-1580422

Реферат

BACKGROUND: SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event. CASE STUDY: A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions. Immunohistochemistry identified focal SARS-CoV-2 nucleocapsid and spike protein in the syncytiotrophoblast and isolated in situ hybridization of the virus' RNA. Low ACE2 and TMPRSS2 contrasted with strong basigin/CD147 and PDL-1 positivity in the trophoblast. An autopsy of the fetus showed no morphological abnormalities except for lung interstitial infiltrate, with prevalent CD8-positive T-lymphocytes and B-lymphocytes. Immunohistochemistry and in situ hybridization proved the presence of countless dispersed SARS-CoV-2-infected epithelial and endothelial cells in the lung tissue. The potential virus-receptor protein ACE2, TMPRSS2, and CD147 expression was too low to be detected. CONCLUSION: Over three weeks' persistence of trophoblast viral infection lead to extensive intervillous fibrinoid depositions and placental infarctions. High CD147 expression might serve as the dominant receptor for the virus, and PDL-1 could limit maternal immunity in placental tissue virus clearance. The presented case indicates that the SARS-CoV-2 infection-induced changes in the placenta lead to ischemia and consecutive demise of the fetus. The infection of the fetus was without significant impact on its death. This rare complication of pregnancy can appear independently to the severity of COVID-19's clinical course in the pregnant mother.


Тема - темы
COVID-19/complications , Placenta/pathology , Pregnancy Complications, Infectious , Stillbirth , Adult , Angiotensin-Converting Enzyme 2 , B-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , Endothelial Cells/pathology , Female , Fetus/pathology , Humans , Infectious Disease Transmission, Vertical , Placenta/virology , Placenta Diseases/pathology , Placenta Diseases/virology , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , Serine Endopeptidases , Spike Glycoprotein, Coronavirus , Trophoblasts
Критерии поиска